Warm Mix Asphalt Technologies and Research |
来源:FHWA 发布日期:2008-5-5
|
European countries are using technologies that appear to allow a reduction in the temperatures at which asphalt mixes are produced and placed. These technologies have been labeled Warm Mix Asphalt (WMA). The immediate benefit to producing WMA is the reduction in energy consumption required by burning fuels to heat traditional hot mix asphalt (HMA) to temperatures in excess of 300° F at the production plant. These high production temperatures are needed to allow the asphalt binder to become viscous enough to completely coat the aggregate in the HMA, have good workability during laying and compaction, and durability during traffic exposure. With the decreased production temperature comes the additional benefit of reduced emissions from burning fuels, fumes, and odors generated at the plant and the paving site. There are three technologies that have been developed and used in European countries to produce WMA: The addition of a synthetic zeolite called Aspha-Min? during mixing at the plant to create a foaming effect in the binder. Plant production with an asphalt emulsion product called Evotherm?, which uses a chemical additive technology and a "dispersed asphalt technology" delivery system. This technology could have a significant impact on transportation construction projects in and around non-attainment areas such as large metropolitan areas that have air quality restrictions. The reduction in fuel usage to produce the mix would also have a significant impact on the cost of transportation construction projects. The benefits of these technologies to the United States in terms of energy savings and air quality improvements are promising but these technologies need further investigation and research in order to validate their expected performance and added value. It is important to note that producing HMA at lower temperatures is the desired product to achieve these benefits, not the particular technology that is used to produce the WMA mix. Product Descriptions 1.Aspha-Min Eurovia recommends adding Aspha-Min at a rate of 0.3 percent by mass of the mix, which can result in a potential 54° F reduction in typical HMA production temperatures. This reduction in temperature is reported to lead to a 30 percent reduction in fuel energy consumption. Eurovia states that all commonly known asphalt and polymer-modified binders can be used as well as the addition of recycled asphalt. The zeolites are framework silicates that have large vacant spaces in their structures that allow space for large cations such as sodium, potassium, barium and calcium and even relatively large molecules and cation groups such as water. In the more useful zeolites, the spaces are interconnected and form long wide channels of varying sizes depending on the mineral. These channels allow the easy movement of the resident ions and molecules into and out of the zeolite structure. The most well known use for zeolites is in water softeners. Zeolites are characterized by their ability to lose and absorb water without damage to their crystal structures. They can have the water in their structures driven off by heat and other solutions pushed through the structure. They can then act as a delivery system for the new fluid. 2.WAM-Foam Shell states that WAM-Foam''s success depends on careful selection of the soft and hard components. In some cases it is recommended to use an adhesion improver in the first mixing stage. Shell also states that initial coating of the aggregate in the first mixing stage is vital to prevent water from reaching the binder and aggregate interface and entering the aggregate and that water must be removed from the asphalt mix to ensure a high quality end product. Shell reports that the decreased production temperatures of the WAM-Foam process can lead to plant fuel savings of 30 percent, which results in a 30 percent reduction in CO2 emissions. 3.Sasobit In the FT process, carbon monoxide is converted into a mixture of hydrocarbons having molecular chain lengths of 1 to 100 carbon atoms and greater. The starting point for the process is synthesis gas, a mixture of carbon monoxide and hydrogen (CO + H2) produced by gasification of coal, a process involving the treating of white-hot hard coal or coke with a blast of steam. The gas is manufactured in vast quantities for commercial use. It is important in the preparation of hydrogen and as a fuel in the making of steel and in other industrial processes. The synthesis gas is reacted in the presence of an iron or cobalt catalyst; heat is created and products such as methane, synthetic gasoline, waxes, and alcohols are made. The liquid products are separated and the FT waxes are contained. The makers of Sasobit emphasize the difference between naturally occurring bituminous waxes and FT waxes in terms of their structure and physical properties. The difference reportedly arises from their much longer chain lengths and the fine crystalline structure of the FT waxes. The predominant chain length of the hydrocarbons in Sasobit is in a range of 40 to 115 carbon atoms. The chain lengths of bituminous paraffin waxes naturally found in asphalt range from 22 to 45 carbon atoms, resulting in a lower melting point than FT waxes. Sasol Wax states that the melting point of Sasobit is approximately 210° F and is completely soluble in asphalt binder at temperatures in excess of 240° F. It produces a reduction in the binder viscosity. This enables production temperatures to be reduced by 18° - 54° F. At temperatures below its melting point, Sasobit forms a lattice structure in the asphalt binder that is the basis for the reported stability of asphalts that contain Sasobit. At service temperatures, Sasobit modified asphalts are reported to display an increased resistance to rutting. In addition Sasol Wax reports improved "compactibility" with an increase in the degree of compaction for the same roller loading as unmodified asphalt. Sasol Wax recommends adding Sasobit at 3 percent by weight of the mix to gain the desired reduction in viscosity and should not exceed 4 percent due to the possible impact on the binder''s low temperature properties. Sasobit can be blended into hot binder at the blending plant using a simple stirrer. A high shear mixer is not required. It is anticipated that in-line blending of melted Sasobit with the asphalt binder stream at the plant will be finalized in the near future. Direct blending of solid Sasobit at the plant is not recommended because it will not give a homogeneous distribution of Sasobit in the asphalt. 4.Evotherm MeadWestvaco reports that field testing has demonstrated a 100° F reduction in production temperatures. MeadWestvaco also reports that the decreased production temperatures of the Evotherm process can lead to plant energy savings of 55 percent; which results in a 45 percent reduction in CO2 and SO2 emissions, a 60% reduction in NOX, a 41% reduction in total organic material, and benzene soluble fractions below detectable limits. 5.Asphaltan B(not used in the United States) Crude Montan Wax is found in Germany, Eastern Europe and areas of the USA in certain types of lignite or brown coal deposits that have formed over millions of years by the transformation of fossilized sub-tropical vegetation that flourished in the Tertiary Period. Wax which once protected the plant leaves from extremes of climate did not decompose, but instead enriched the coal. Due to its high stability and insolubility in water, the wax has survived over long geological time periods. After mining, the Montan Wax is extracted from the coal by means of a toluene solvent that is distilled from the wax solution and removed with super heated steam. Romonta GmbH has a global market share of 80 per cent in the crude mined wax products sector. Romonta recommends adding Asphaltan B at 2 to 4 percent by weight. It can be added to the asphalt mixing plant or directly at the binder producer and can also be added to polymer-modified binders. The melting point of Asphaltan B is approximately 210° F. Similar to FT waxes, it acts as an "asphalt flow improver" with associated reduced production temperatures. Romonta does not specify how much the production temperature can be lowered. Like FT waxes, Romonta also reports increased "compactibility" and resistance to rutting. Current Status of Activities Report 06-02 "Evaluation of Evotherm for Use in Warm Mix Asphalt" Although the initial research focused on the Aspha-Min?, Sasobit?, and Evotherm? products, future research in this area is rapidly expanding to include the other WMA technologies. Warm Mix Asphalt Technical Working Group (WMA TWG) NCHRP Project 09-43 Continued FHWA Involvement and Support The MAMTL was on site for material sampling and testing during the Missouri Department of Transportation WMA demonstration project on Hall Street in St. Louis. This demonstration project included construction of asphalt pavements using the Aspha-Min?, Sasobit?, and Evotherm? products by Pace Construction. A large amount of volumetric and performance specimens were immediately fabricated for testing in addition to loose mix sampled for later testing to investigate any effects due to reheating and residual moisture. The immediately fabricated specimen testing has been completed. A final report of the test results and findings will be published upon completion of all testing and analysis. |